Note that there is a space next to an Attractor: "...-->--( ..." and not next to a bracket: "...-->--((...".
Proof of "Axioms" of Propositional Logic: Synopsis
Collapse
X
-
Actually we must restrict A:AM so that we can't prove "(A)--(x)--(B)" from "(A)--(+)--(B)" for example. Thus we need axioms:
A:AM2: )--(x)-- ((A) []--(+)--(B)) <> )--(x)--(A) []--(+)--(B)
where we see the attractor not going to "(B)" too. Similarly:
A:AM3: )--(x)-- ((A) []-->--(B)) <> )--(x)--(A) []-->--(B)
and:
A:AM4: )--(+)-- ((A) []-->--(B)) <> )--(+)--(A) []-->--(B)
and:
A:AM5: )---- ((A) []--(+)--(B)) <> )----(A) []--(+)--(B)
where "----" means: "is relevant to", and
A:AM6: )---- ((A) []-->--(B)) <> )----(A) []-->--(B).Comment
Comment